Why does asteroid Bennu eject gravel into space? No one is sure. The discovery, occurring during several episodes by NASA’s visiting OSIRIS-REx spacecraft, was unexpected. Leading ejection hypotheses include impacts by Sun-orbiting meteoroids, sudden thermal fractures of internal structures, and the sudden release of a water vapor jet. The featured two-image composite shows an ejection event that occurred in early 2019, with sun-reflecting ejecta seen on the right. Data and simulations show that large gravel typically falls right back to the rotating 500-meter asteroid, while smaller rocks skip around the surface, and the smallest rocks completely escape the low gravity of the Earth approaching, diamond-shaped asteroid. Jets and surface ejection events were thought to be predominantly the domain of comets, responsible for their tails, comas, and later meteor showers on Earth. Robotic OSIRIS-REx arrived at 101955 Bennu in late 2018, and is planned to touchdown to collect a surface sample in October 2020. If all goes well, this sample will then be returned to Earth for a detailed analysis during 2023. Bennu was chosen as the destination for OSIRIS-REx in part because its surface shows potential to reveal organic compounds from the early days of our Solar System, compounds that could have been the building blocks for life on Earth. Experts Debate: How will humanity first discover extraterrestrial life?

Could there be life floating in the atmosphere of Venus? Although Earth’s planetary neighbor has a surface considered too extreme for any known lifeform, Venus’ upper atmosphere may be sufficiently mild for tiny airborne microbes. This usually disfavored prospect took an unexpected upturn yesterday with the announcement of the discovery of Venusian phosphine. The chemical phosphine (PH3) is a considered a biomarker because it seems so hard to create from routine chemical processes thought to occur on or around a rocky world such as Venus — but it is known to be created by microbial life on Earth. The featured image of Venus and its thick clouds was taken in two bands of ultraviolet light by the Venus-orbing Akatsuki, a Japanese robotic satellite that has been orbiting the cloud-shrouded world since 2015. The phosphine finding, if confirmed, may set off renewed interest in searching for other indications of life floating high in the atmosphere of our Solar System’s second planet out from the Sun. Experts Debate: How will humanity first discover extraterrestrial life?

A rising moon can be a dramatic sight. A rising Full Corn Moon was captured early this month in time-lapse with a telephoto lens from nearly 30 kilometers away — making Earth’s ascending half-degree companion appear unusually impressive. The image was captured from Portugal, although much of the foreground — including lights from the village of Puebla de Guzmán — is in Spain. A Full Corn Moon is the name attributed to a full moon at this time of year by cultures of some northern indigenous peoples of the Americas, as it coincides with the ripening of corn. Note that the Moon does not appear larger when it is nearer the horizon — its seemingly larger size there is only an illusion. The next full moon — occurring at the beginning of next month — will be known as the Full Harvest Moon as it occurs nearest in time to the northern autumnal equinox and the northern field harvests.

Are stars better appreciated for their art after they die? Actually, stars usually create their most artistic displays as they die. In the case of low-mass stars like our Sun and M2-9 pictured here, the stars transform themselves from normal stars to white dwarfs by casting off their outer gaseous envelopes. The expended gas frequently forms an impressive display called a planetary nebula that fades gradually over thousands of years. M2-9, a butterfly planetary nebula 2100 light-years away shown in representative colors, has wings that tell a strange but incomplete tale. In the center, two stars orbit inside a gaseous disk 10 times the orbit of Pluto. The expelled envelope of the dying star breaks out from the disk creating the bipolar appearance. Much remains unknown about the physical processes that cause and shape planetary nebulae. Almost Hyperspace: Random APOD Generator

Mars reappears just beyond the Moon’s dark limb in this stack of sharp video frames captured on September 6. Of course to reappear it had to disappear in the first place. It did that over an hour earlier when the sunlit southern edge of the waning gibbous Moon passed in front of the Red Planet as seen from Maceio, Brazil. The lunar occultation came as the Moon was near apogee, about 400,000 kilometers away. Mars was almost 180 times more distant. It was the fourth lunar occultation of Mars visible from planet Earth in 2020. Visible from some southern latitudes, the fifth lunar occultation of Mars in 2020 will take place on October 3 when the Moon and Mars are both nearly opposite the Sun in planet Earth’s sky.

A bright storm head with a long turbulent wake swims across Jupiter in these sharp telescopic images of the Solar System’s ruling gas giant. Captured on August 26, 28, and September 1 (left to right) the storm approximately doubles in length during that period. Stretching along the jetstream of the planet’s North Temperate Belt it travels eastward in successive frames, passing the Great Red Spot and whitish Oval BA, famous storms in Jupiter’s southern hemisphere. Galilean moons Callisto and Io are caught in the middle frame. In fact, telescopic skygazers following Jupiter in planet Earth’s night have reported dramatic fast moving storm outbreaks over the past few weeks in Jupiter’s North Temperate Belt.

How do black holes like this form? The two black holes that spiraled together to produce the gravitational wave event GW190521 were not only the most massive black holes ever seen by LIGO and VIRGO so far, their masses — 66 and 85 solar masses — were unprecedented and unexpected. Lower mass black holes, below about 65 solar masses are known to form in supernova explosions. Conversely, higher mass black holes, above about 135 solar masses, are thought to be created by very massive stars imploding after they use up their weight-bearing nuclear-fusion-producing elements. How such intermediate mass black holes came to exist is yet unknown, although one hypothesis holds that they result from consecutive collisions of stars and black holes in dense star clusters. Featured is an illustration of the black holes just before collision, annotated with arrows indicating their spin axes. In the illustration, the spiral waves indicate the production of gravitational radiation, while the surrounding stars highlight the possibility that the merger occurred in a star cluster. Seen last year but emanating from an epoch when the universe was only about half its present age (z ~ 0.8), black hole merger GW190521 is the farthest yet detected, to within measurement errors. Astrophysicists: Browse 2,200+ codes in the Astrophysics Source Code Library

Where do land and sky converge? On every horizon — but in this case the path on the ground leads to St Michael’s Mount (Cornish: Karrek Loos yn Koos), a small historic island in Cornwall, England. The Mount is usually surrounded by shallow water, but at low tide is spanned by a human-constructed causeway. The path on the sky, actually the central band of our Milky Way Galaxy, also appears to lead to St Michael’s Mount, but really lies far in the distance. The red nebula in the Milky Way, just above the castle, is the Lagoon Nebula, while bright Jupiter shines to the left, and a luminous meteor flashes to the right. The foreground and background images of this featured composite were taken on the same July night and from the same location. Although meteors are fleeting and the Milky Way disk shifts in the night as the Earth turns, Jupiter will remain prominent in the sunset sky into December. Moon Occults Mars: Notable images submitted to APOD

This is the mess that is left when a star explodes. The Crab Nebula, the result of a supernova seen in 1054 AD, is filled with mysterious filaments. The filaments are not only tremendously complex, but appear to have less mass than expelled in the original supernova and a higher speed than expected from a free explosion. The featured image, taken by the Hubble Space Telescope, is presentedi in three colors chosen for scientific interest. The Crab Nebula spans about 10 light-years. In the nebula’s very center lies a pulsar: a neutron star as massive as the Sun but with only the size of a small town. The Crab Pulsar rotates about 30 times each second.